

NATIONAL PHYSICAL LABORATORY Teddington Middlesex UK TW11 0LW Telephone +44 20 8977 3222

Test Report

Determination of Attenuation Properties of Materials using Diagnostic X-Radiation

This test report may only be published in full, unless permission for the publication of an approved extract has been obtained in writing from NPL Management Ltd. It does not of itself impute to the subject of test any attributes beyond those shown by the data contained herein.

FOR:

Lite Tech Inc 975 Madison Ave Norristown 19403 United States

DESCRIPTION:

Determination of Attenuation properties of various Material according to BS EN 61331-1:2014 using the modified Broad Beam Geometry (Eder and Schlattl, 2018¹)

DATE OF MEASUREMENTS: 16 -19 June 2020

Reference: 2020060011_1 **Date of Issue:** 08 July 2020

Signed:

Name: G A Bass

Page 1 of 5 (Authorised signatory) on behalf of NPLML

Continuation Sheet

CONDITIONS:

Distance from x-ray tube to target sample: Ionisation chamber used: 0.8m PTW TW34069-2.5 s/n 000231

All equipment associated with the measurements performed in this report has direct traceability to UK national standards or UKAS accredited calibration facilities.

	Table I		
	61331-1:2014 X-ra	ay beam qualities	
T 7			

<u>X-ray Tube Voltage</u>	Added filtration
kV	mmAl*
50 - 150	2.5

*The inherent filtration of the x-ray tube was determined to be 0.5mmAl equivalent (according to ISO 4037-1:1996), giving a total filtration of 3.0mmAl

 F_{mBBG} is the attenuation ratio in the modified Broad Beam Geometry¹, given by:

$$F_{mBBG} = \frac{\dot{K}_0 - \dot{K}_B}{\dot{K}_1 - \dot{K}_B}$$

where $\dot{K}_0 = \text{Air Kerma Rate}$ without the test object in the beam

 \dot{K}_1 = Air Kerma Rate with the test object in the beam

 \dot{K}_B = Background Air Kerma Rate with the test object replaced by a sheet of material with an attenuation ratio greater than 10⁵.

The Lead equivalent value δ_{mBBG} in mm using the modified Broad Beam Geometry is obtained by fits to the attenuation curves F_{mBBG} of Lead foils of known thicknesses and of at least 99.995% purity.

UNCERTAINTIES

The uncertainty in the Lead equivalence value δ_{mBBG} is $\pm 5\%$. The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%.

REFERENCES

1. IEC 61331-1: A new setup for testing lead free X-ray protective clothing, Heinrich Eder and Helmut Schlattl, *Physica Medica* 45 (2018) 6–11

Page 2 of 5

Continuation Sheet

RESULTS:

 Table II

 Xenolite Strata 300 leadfree Lot# 5092/5085, sample #190, 0.25mm nominal Lead equivalent Measured Area density: 2.81 kg/m²

kV	F _{mBBG}	<u>δ_{mBBG}</u>	PASS/FAIL†
		mm	
60	34.45	0.2355	PASS
70	20.14	0.2470	PASS
90	9.47	0.2564	PASS
110	6.36	0.2476	PASS

Table III

Xenolite Strata 300 Bi-layer Lot# 5058/5086, sample #191, 0.35mm nominal Lead equivalent Measured Area density: 3.95 kg/m²

<u>kV</u>	<u>F_{mBBG}</u>	<u>δ_{mBBG}</u>	PASS/FAIL†
		IIIII	
60	97.90	0.3469	PASS
70	43.34	0.3493	PASS
90	15.99	0.3604	PASS
110	9.81	0.3396	PASS

 Table IV

 Xenolite Strata 300 Bi-layer Lot# 5092/5085, sample #192, 0.5mm nominal Lead equivalent Measured Area density: 5.54 kg/m²

<u>kV</u>	<u>F</u> _{mBBG}	<u>δ_{mBBG}</u>	PASS/FAIL†
		mm	
60	344.74	0.5077	PASS
70	107.89	0.4909	PASS
90	28.64	0.4950	PASS
110	16.58	0.4661	PASS

Reference:	2020060011_1
Checked by:	MIC
	DJM

Page 3 of 5

Continuation Sheet

Table V

Xenolite Strata 200 Part-lead Lot# 5084/5074, sample #193, 0.25mm nominal Lead equivalent Measured Area density: 2.99 kg/m²

<u>kV</u>	<u>F</u> _{mBBG}	<u>δ_{mBBG}</u>	PASS/FAIL†
		mm	
70	18.27	0.2351	PASS
90	8.93	0.2458	PASS
110	6.10	0.2394	PASS

Table VI

Xenolite Strata 200 Bi-layer Lot# 5083/55/60, sample #194, 0.35mm nominal Lead equivalent Measured Area density: 4.56 kg/m²

<u>kV</u>	F _{mBBG}	<u>δ_{mBBG}</u>	PASS/FAIL†
		mm	
60	114.96	0.3658	PASS
70	50.29	0.3709	PASS
90	17.50	0.3799	PASS
110	10.90	0.3638	PASS

Table VII

Xenolite Strata 200 Bi-layer Lot# 5084/5074, sample #195, 0.5mm nominal Lead equivalent Measured Area density: 5.92 kg/m²

<u>kV</u>	F _{mBBG}	<u>δ_{mBBG}</u>	PASS/FAIL†
		mm	
60	311.19	0.4936	PASS
70	104.47	0.4855	PASS
90	28.79	0.4962	PASS
110	16.60	0.4665	PASS

Table VIII						
EVA	EVAL 900 100% Pb Lot# 5001, sample #196, 0.25mm nominal Lead equivalent					
	Measured Area density: 3.62 kg/m ²					
	<u>kV</u>	F _{mBBG}	<u>δ_{mBBG}</u>	PASS/FAIL†		
			mm			
	60	45.14	0.2624	PASS		
	70	23.46	0.2661	PASS		
	90	10.41	0.2740	PASS		
	110	7.28	0.2750	PASS		

0.2736

0.2751

PASS

PASS

Reference:	2020060011_1
Checked by:	////
/	M
T	DTM

120

150

6.40

4.83

Continuation Sheet

Table IX

EVAL 900 100% Pb Lot# 4952, sample #197, 0.35mm nominal Lead equivalent Measured Area density: 4.90 kg/m²

<u>kV</u>	F _{mBBG}	<u>δ_{mBBG}</u>	PASS/FAIL†
		mm	
60	102.01	0.3517	PASS
70	47.98	0.3640	PASS
90	16.64	0.3689	PASS
110	11.28	0.3718	PASS
120	9.75	0.3681	PASS
150	7.06	0.3677	PASS

Table X

EVAL 900 100% Pb Lot# 5001, sample #198, 0.5mm nominal Lead equivalent Measured Area density: 7.11 kg/m²

<u>kV</u>	<u>F</u> _{mBBG}	<u>δ</u> mbbg	PASS/FAIL†
		mm	
60	421.95	0.5362	PASS
70	127.83	0.5196	PASS
90	32.79	0.5290	PASS
110	21.02	0.5288	PASS
120	17.99	0.5239	PASS
150	12.51	0.5220	PASS

†Determination of the lead equivalent class for a specified range of radiation qualities according to IEC 61331-1 clause 5.5.

Clause 5.5.3 of IEC 61331-1:2014 states that a relative standard uncertainty of 7% be taken into account in the decision of conformity in assigning the class of the Lead equivalent thickness to the material under test. If t_{Pb} is the standard Lead equivalent thickness class (0.25mm, 0.35mm, 0.5mm or 1mm) and δ_{IB} is the Lead equivalence of the material under test, the condition can be written as:

 $\delta_{IB} \ge 0.93 t_{Pb}$

The Lead equivalence in the Inverse Broad Beam geometry, δ_{IB} has been replace with δ_{mBBG} for this determination.

Reference: 2020060011_1 Checked by: Page 5 of 5